Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
World Allergy Organ J ; 16(5): 100779, 2023 May.
Article in English | MEDLINE | ID: covidwho-2309462

ABSTRACT

Introduction: Allergen immunotherapy (AIT) brings along changes in the immune system, restoring dendritic cell function, reducing T2 inflammation and augmenting the regulatory cell activation. Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, interferes with the immune system causing immune suppression during the first phase and over-activation in more advanced disease. We decided to explore the interaction of both in a real-world observational trial. Methods: We registered COVID-19 outcomes in patients with allergic disorders in Latin America, treated with and without AIT. The registry was conducted during the first 1.3 years of the pandemic, with most of the data collected before COVID-19 vaccination was concluded in most countries. Data collection was anonymous via a web-based instrument. Ten countries participated. Results: 630/1095 (57.6%) of the included patients received AIT. Compared to patients without AIT, those treated with AIT had a reduced risk ratio (RR) for COVID-19 lower respiratory symptoms (RR 0.78, 95% CI: 0.6703-0.9024; p = 0.001662) and need for oxygen therapy (RR 0.65, 95% CI: 0.4217-0.9992; p = 0.048). In adherent patients on maintenance sublingual immunotherapy/subcutaneous immunotherapy (SLIT/SCIT) the RR reduction was larger [RR = 0.6136 (95% CI 0.4623-0.8143; p < 0.001) and RR: 0.3495 (95% CI 0.1822-0.6701; p < 0.005), respectively]. SLIT was slightly more effective (NS). We excluded age, comorbidities, level of health care attendance, and type of allergic disorder as confounders, although asthma was related to a higher frequency of severe disease. When analyzing patients with allergic asthma (n = 503) the RR reduction favoring AIT was more pronounced with 30% for lower respiratory symptoms or worse (RR 0.6914, 95% CI 0.5264 to 0.9081, p = 0.0087) and 51% for need of oxygen therapy or worse (RR 0.4868, 95% CI 0.2829-0.8376, p = 0.0082). Among severe allergic patients treated with biologics (n = 24) only 2/24 needed oxygen therapy. There were no critical cases among them. Conclusion: In our registry AIT was associated with reduced COVID-19 severity.

3.
Allergy ; 76(8): 2354-2366, 2021 08.
Article in English | MEDLINE | ID: covidwho-1315749

ABSTRACT

BACKGROUND: Although there are many asymptomatic patients, one of the problems of COVID-19 is early recognition of the disease. COVID-19 symptoms are polymorphic and may include upper respiratory symptoms. However, COVID-19 symptoms may be mistaken with the common cold or allergic rhinitis. An ARIA-EAACI study group attempted to differentiate upper respiratory symptoms between the three diseases. METHODS: A modified Delphi process was used. The ARIA members who were seeing COVID-19 patients were asked to fill in a questionnaire on the upper airway symptoms of COVID-19, common cold and allergic rhinitis. RESULTS: Among the 192 ARIA members who were invited to respond to the questionnaire, 89 responded and 87 questionnaires were analysed. The consensus was then reported. A two-way ANOVA revealed significant differences in the symptom intensity between the three diseases (p < .001). CONCLUSIONS: This modified Delphi approach enabled the differentiation of upper respiratory symptoms between COVID-19, the common cold and allergic rhinitis. An electronic algorithm will be devised using the questionnaire.


Subject(s)
Asthma , COVID-19 , Common Cold , Rhinitis, Allergic , Consensus , Humans , Rhinitis, Allergic/diagnosis , SARS-CoV-2
4.
Int Arch Allergy Immunol ; 182(4): 324-338, 2021.
Article in English | MEDLINE | ID: covidwho-1076039

ABSTRACT

In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.


Subject(s)
COVID-19/diet therapy , COVID-19/immunology , NF-E2-Related Factor 2/immunology , Nutrients/immunology , SARS-CoV-2/immunology , TRPA1 Cation Channel/immunology , TRPV Cation Channels/immunology , Antioxidants/metabolism , Biomarkers/metabolism , Brassica , COVID-19/complications , COVID-19/diagnosis , COVID-19 Testing , Desensitization, Immunologic/methods , Down-Regulation , Humans , Oxidative Stress/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Up-Regulation
6.
Int Arch Allergy Immunol ; 182(6): 489-495, 2021.
Article in English | MEDLINE | ID: covidwho-992130

ABSTRACT

There are large country variations in COVID-19 death rates that may be partly explained by diet. Many countries with low COVID-19 death rates have a common feature of eating large quantities of fermented vegetables such as cabbage and, in some continents, various spices. Fermented vegetables and spices are agonists of the antioxidant transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and spices are transient receptor potential ankyrin 1 and vanillin 1 (TRPA1/V1) agonists. These mechanisms may explain many COVID-19 symptoms and severity. It appears that there is a synergy between Nrf2 and TRPA1/V1 foods that may explain the role of diet in COVID-19. One of the mechanisms of COVID-19 appears to be an oxygen species (ROS)-mediated process in synergy with TRP channels, modulated by Nrf2 pathways. Spicy foods are likely to desensitize TRP channels and act in synergy with exogenous antioxidants that activate the Nrf2 pathway.


Subject(s)
COVID-19/physiopathology , Diet , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/physiology , Spices , TRPA1 Cation Channel/metabolism , Antioxidants , Disease Resistance , Fermentation , Humans , Reactive Oxygen Species/metabolism , Signal Transduction , Vegetables
8.
Clin Transl Allergy ; 10: 16, 2020.
Article in English | MEDLINE | ID: covidwho-378138

ABSTRACT

Reported COVID-19 deaths in Germany are relatively low as compared to many European countries. Among the several explanations proposed, an early and large testing of the population was put forward. Most current debates on COVID-19 focus on the differences among countries, but little attention has been given to regional differences and diet. The low-death rate European countries (e.g. Austria, Baltic States, Czech Republic, Finland, Norway, Poland, Slovakia) have used different quarantine and/or confinement times and methods and none have performed as many early tests as Germany. Among other factors that may be significant are the dietary habits. It seems that some foods largely used in these countries may reduce angiotensin-converting enzyme activity or are anti-oxidants. Among the many possible areas of research, it might be important to understand diet and angiotensin-converting enzyme-2 (ACE2) levels in populations with different COVID-19 death rates since dietary interventions may be of great benefit.

9.
Allergy ; 75(7): 1546-1554, 2020 07.
Article in English | MEDLINE | ID: covidwho-116569
SELECTION OF CITATIONS
SEARCH DETAIL